Sometimes this question can be asked like this:
Prove that: 2tan50 + tan20 = tan70
For now, we have to prove:
Prove that: 2tan50 + tan20 = cot20
We know,
20 + 50 = 70
taking tan on both sides, we have
tan(20 + 50) = tan70
(tan 20 + tan 50) / (1 - tan 20.tan 50) = tan70 [∵ tan(A+B)=(tan A+tan B)/(1-tanA.tanB)]
Prove that: 2tan50 + tan20 = tan70
For now, we have to prove:
Prove that: 2tan50 + tan20 = cot20
We know,
20 + 50 = 70
taking tan on both sides, we have
tan(20 + 50) = tan70
(tan 20 + tan 50) / (1 - tan 20.tan 50) = tan70 [∵ tan(A+B)=(tan A+tan B)/(1-tanA.tanB)]
tan20 + tan50 = tan70 * (1 - tan20.tan50)
tan 20 + tan50 = tan70 - tan 20.tan 50.tan70
tan20 + tan50 = tan70 - tan 20.tan50.cot 20 [∵ tan70 = tan (90-20) = cot 20]
tan20 + tan50 = tan70 - tan 20.tan50.(1/tan20) [∵ cot20 = 1/tan20]
tan20 + tan 50 = tan70 - tan50
tan20 + tan50 + tan50 = tan70
2tan50 + tan20 = tan70
2tan50 + tan20 = cot20 [∵ tan70 = cot20] Proved.
tan20 + tan50 = tan70 - tan 20.tan50.(1/tan20) [∵ cot20 = 1/tan20]
tan20 + tan 50 = tan70 - tan50
tan20 + tan50 + tan50 = tan70
2tan50 + tan20 = tan70
2tan50 + tan20 = cot20 [∵ tan70 = cot20] Proved.