Q.Prove that: [1+Tan^2(pie/4-A)] / [1-Tan^2(pie/4-A)] = cosec2A
![Q.Prove that: [1+Tan^2(pie/4-A)] / [1-Tan^2(pie/4-A)] = cosec2A](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEinGiOEaD5LPLqioiclipXvWEh8E5qSkBGwjNqIAtw0LjlC5ZpiCgwAGGCj53_TiIRRs6-n_Uq_8iH-vDjhMt9xytukA2QzZaedzC0_hwpVoO2qe45Cn6Dmm0oIYOz_dkS5aA-ee6BnzIim/s72-c/coollogo_com-4440765.png)
SUBSCRIBE TO OUR NEWSLETTER
You May Also Like
Q. Prove that: (2cos2A-1)(2cos2A+1)(2cos4A-1)(2cos8-1)=2cos16A+1 ...
Q. cosec40 - root(3)sec40 = 4cot100 Soln: L.H.S. = cosec40 - Ö3sec40 = 1/sin40 - Ö3/cos40 = 1/sin40 - tan60/cos40 [tan60=Ö3] = 1/sin40 - si ...
Q. 8cos^3(20) - 8sin^3(10) - 6cos20 + 6sin10 = 2 Soln: L.H.S. = 8cos320 – 8sin310 – 6cos20 + 6sin10 = 2(4cos320 – 4sinn310 – 3cos20 + 3sin10) = 2(4cos320 - 3cos20 + 3sin10 ...
Q. Find the point which divides the line joining the points (1,-2) and (3,2) in the ratio 1:3. Soln: Note: If internal division or external division is not mentioned in question, by default, the problem should be solved ...
Prove that: cos^2(A+120)+cos^2(A-120)+cos^2(A) = 3/2 Soln: Use formula: cos2A = 2cos^2(A) - 1 cos2A+1= 2cos^2(A) (1+cos2A)/2 = cos^2(A) i.e. cos^2(A) = (1+cos2A)/2 ...