Friday, August 4, 2017

Q. If 2Tanα = 3Tanβ, then show that Tan(α-β) = Sin2β/(5-Cos2β)

Soln:
2tanα=3tanβ
tanα=(3/2)tanβ

L.H.S.
= tan(α-β)
= (tanα-tanβ)/(1+tanα.tanβ)
= {(3/2)tanβ-tanβ}/{1+(3/2)tanβ.tanβ}
= {(3tanβ-2tanβ)/2}/{(2+3tan²β)/2}
= tanβ/(2+3tan²β)
= (sinβ/cosβ)/{2+3(sin²β/cos²β)}
= (sinβ/cosβ)/{(2cos²β+3sin²β)/cos²β}
= {(sinβ/cosβ)×cos²β}/{2cos²β+3(1-cos²β)} [∵ sin²β+cos²β=1]
= (sinβcosβ)/(2cos²β+3-3cos²β)
= {2sinβcosβ}/{2(3-cos²β)}
= sin2β/(6-2cos²β)                                             [∵ sin2β=2sinβcosβ]
= sin2β/(5+1-2cos²β)
= sin2β/{5-(2cos²β-1)}                                      [cos2β=2cos²β-1]
= sin2β/(5-cos2β)
= R.H.S. Proved.